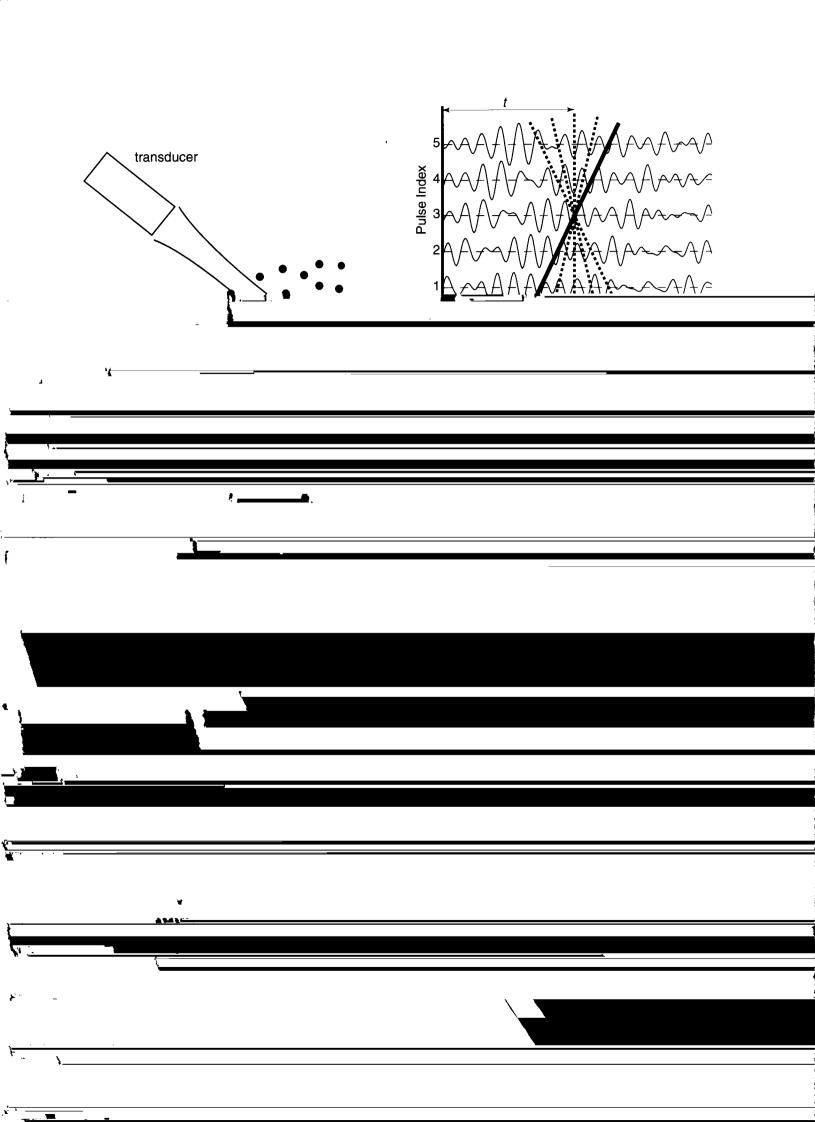
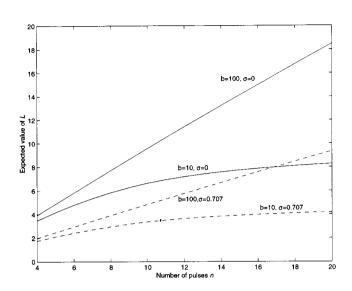
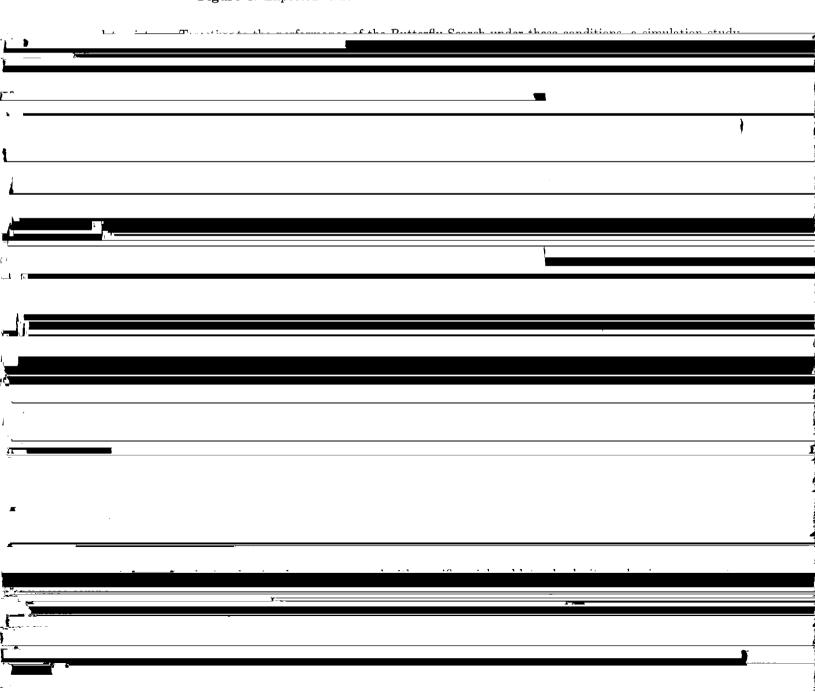

Effect of Decorrelation on Butterfly Search Velocity Estimator Performance


Stephen A. McAleavey and Kevin J. Parker

Department of Electrical and Computer Engineering University of Rochester, Rochester, NY 14627, USA





	Uncorrelated Noise The next degree of complexity involves a constant signal in the presence of noise. In this
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
:	
<u>.</u>	
	where a is a real constant, and $\zeta_i = x_i + jy_i$, where x and y are independent Gaussian random variables, with zero mean and variance σ^2 , representing additive noise. The expression for the expected value of L my be written
	$F[H] = \frac{1}{2} \sum_{i=1}^{n-1} \sum_{j=1}^{n} \left(\frac{2a^2}{F} \right) + \frac{1}{2} \sum_{j=1}^{n-1} \sum_{j=1}^{n} \left(\frac{a\varsigma_i + a\varsigma_i^*}{F} \right) + \frac{1}{2} \sum_{j=1}^{n-1} \sum_{j=1}^{n} \left(\frac{s_i^* \varsigma_j + \varsigma_i \varsigma_j^*}{F} \right) \right) $ (13)
-	
_ =	
<u> </u>	
d.	
41	

	$\underbrace{\left(z_{i}^{*}z_{j}+z_{i}\underline{z}_{i}^{*}\right)}$	$\int z_i^* \zeta_i + z_i \zeta_i^*)$	$(z_i^*\varsigma_i + z_i\varsigma_i^*)$	$= \left(\varsigma_i^* \varsigma_i + \varsigma_i \varsigma_i^* \right) \setminus$
- <u>- </u>			7	
e e			1	
<u> </u>				
-1,				
<u> </u>				
±				
The last three e	expected values can be taken denominator terms are not i	ndependent. In orde	r to attempt an ana	

Figure 4. Expected value of L as a function of n. a=1 for all traces.

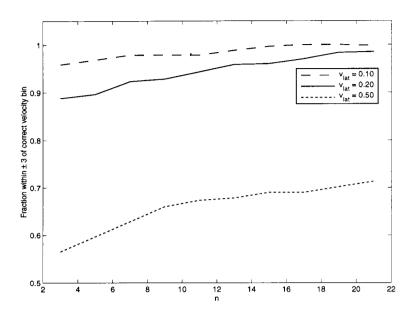
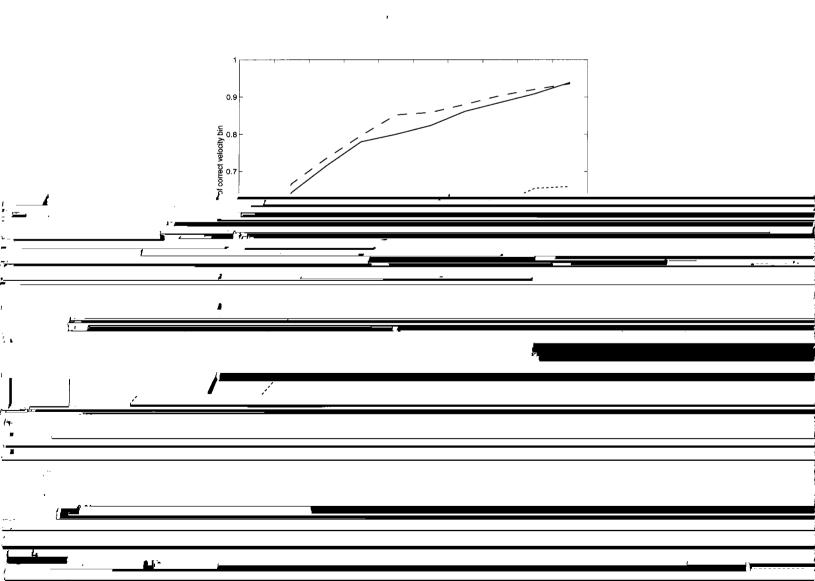



Figure 5. Fraction of velocity estimates within ± 3 velocity bins for lateral velocities of 0.1, 0.2 and 0.5 m/s, SNR $= \infty$

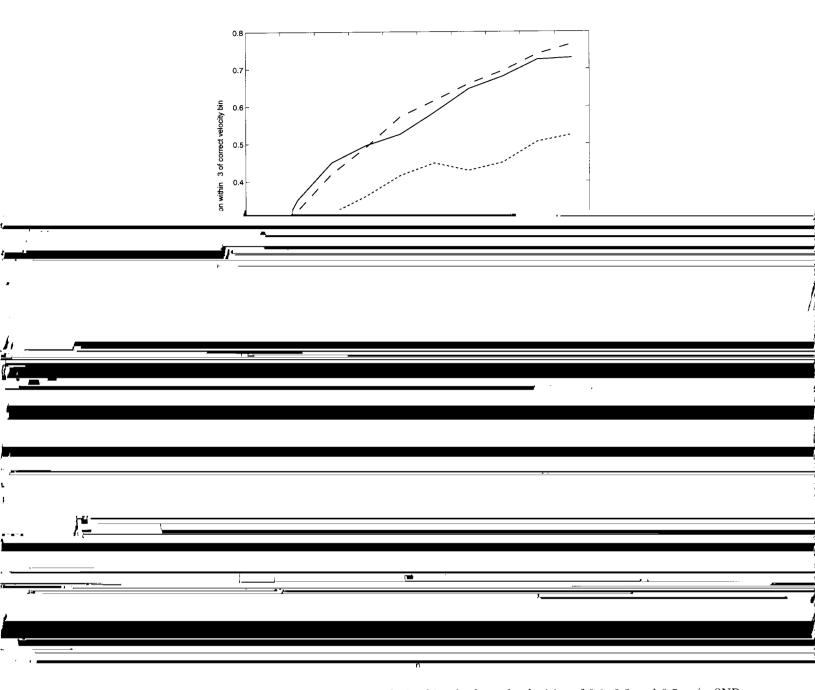
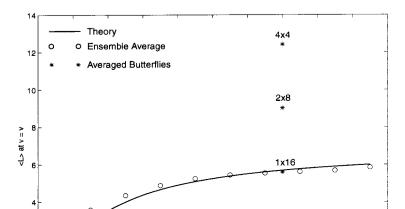



Figure 7. Fraction of velocity estimates within ± 3 velocity bins for lateral velocities of 0.1, 0.2 and 0.5 m/s, SNR = 0dB.

A-lines.

 $\mathrm{SNR} = \infty$

1 -

			$v_{ m la}$	$_{ m teral}({ m m})$	$/\mathrm{s})$		
	0.00	0.01	0.02	0.05	0.10	0.20	0.50
1:16	1.00 1.00 1.00	1.00	1.00	1.00	1.00	0.96	0.69
2:8	1.00	1.00	1.00	1.00	1.00	0.97	0.72
4:4	1.00	1.00	1.00	1.00	1.00	1.00	0.86

SNR = 6dB

	0.00		$v_{ m la}$	$_{ m teral}({ m m}$	$/\mathrm{s})$		
	0.00	0.01	0.02	0.05	0.10	0.20	0.50
1:16	$egin{array}{c} 0.88 \\ 0.81 \\ 0.72 \\ \hline \end{array}$	0.89	0.90	0.90	0.89	0.88	0.63
2:8	0.81	0.84	0.84	0.82	0.83	0.87	0.63
4:4	0.72	0.73	0.72	0.73	0.76	0.82	0.71

 $\mathrm{SNR} = 0\mathrm{dB}$

			$v_{ m la}$	$_{ m teral}({ m m})$	$/\mathrm{s})$		
	0.00	0.01	0.02	0.05	0.10	0.20	0.50
1:16	0.69	0.71	0.70	0.69	0.68	0.67	0.42
2.8	l n 58_	_0 61	በ 63	0 60	ი 59	በ 64	0 44

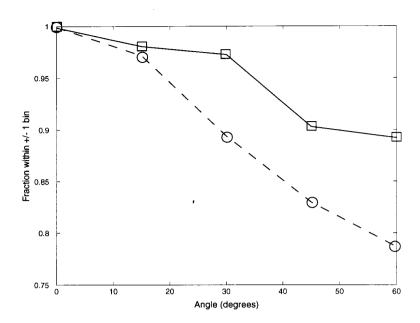


Figure 9. Performance of Butterfly estimator on water tank data versus angle. Circles denote data points for religible to the average of four Butterfly of 16 A lines. Squares indicate results for the average of four Butterflies of four

A-lines each..

5. CONCLUSION

The effect of echo-to-echo decorrelation on Butterfly Search estimation has been assessed. An analytical approximation to the expected value of the L function has been found for several cases of interest, and all are found to be in good agreement with results obtained by ensemble averaging. The approximations indicate that the maximum value of the L function is limited by the rate of signal decorrelation. Simulations show that this correlates well with

	and K. Parker, "Reduction	or computational compl	exity in the butterfly se	arch technique ultrasonic
	<u> </u>			
-	-			
			j	
<u> </u>			****	f.e.
. =r				
#.Ex.				
				,
			•	•