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Effect of Decorrelation on Butterfly Search Velocity Estimator
Performance
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analytical approximation for the expected value of the Butterfly Search L(v) function is developed for three cases
of interest. The approx1mat10ns are verified against synthe51zed echo data. It is found that the peak value of the
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data is calculated for varying SNRs and rates of decorrelation. The results show that improved performance may
be obtained by processing and averaging subsets of echo ensembles, rather than applying the Butterfly Search to

the entire ensemble simultaneously. For lower SNRs, processing the entire ensemble at once produces equivalent
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1. INTRODUCTION

Color Doppler ultrasound is widely used for the clinical assessment of blood flow. Ultrasound techniques in general
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is the twnyusv transfer foetiny of the transdicer (7 is a seale factor. da t




Note that the left hand side is less than or equal to a constant. Since equality is achieved only when g; = kga,
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Inserting the re-sampled signal r,, (¢, v) for g; finally gives the expression for L(t,v)
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This is the L(v) function on RF of Alam and Parker, expanded as a function of time (depth). L takes on a maximum
i = %—'&_ﬂ@‘r—h N — fompare

maximizes L as the estimate of velocity.

Since the amplitude of the RF signal varies sinuséidally with frequency fo while noise imposed on the signal
from various sources will have a constant mean-square value, calculating L(¢, ) on the basis of the raw RF signal is
likely to result in time-dependent performance, which is undesirable. This difficulty may be avoided by calculating
L(t,v) using either the analytic or quadrature representations of the RF signal. The analytic form may be found by
calculating the Hilbert transform of the RF signal, which may be implemented as a FIR filter. Calculation of L(t,v)
with the analytic RF signal is precisely the same as with the real RF signal. With a quadrature signal, the matched
filter is not a constant, but a complex sinusoid on n whose frequency depends on v. Separate matched filters must be

hyalne of ¢ and applied in calculating L{¢, v) with quadrature signalg. In ejther case. the cyclicly
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Figure 4. Expected value of L as a function of n. a = 1 for all traces.
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Figure 5. Fraction of velocity estimates within £3 velocity bins for lateral velocities of 0.1, 0.2 and 0.5 m/s, SNR
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Figure 7. Fraction of velocity estimates within £3 velocity bins for lateral velocities of 0.1, 0.2 and 0.5 m/s, SNR
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Figure 8. Expected value of L as a function of n. Vatera; = 0.5m/s. Solid curve denotes analytic estimate for



SNR = oo

Vlateral (m/s)

0.00 0.01 0.02 0.05 0.10 0.20 0.50
1:16 {j 1.00 1.00 1.00 1.00 1.00 0.96 0.69
2:8 1.00 1.00 1.00 1.00 1.00 0.97 0.72
4:4 1.00 1.00 1.00 1.00 1.00 1.00 0.86
SNR = 6dB
Ulateral(m/s>
0.00 0.01 0.02 0.05 0.10 0.20 0.50
1:16 || 0.88 0.89 0.90 090 0.89 0.88 0.63
2:8 || 0.81 0.84 0.84 0.82 0.83 0.87 0.63
4:4 0.72 0.73 0.72 0.73 0.76 0.82 0.71
SNR = 0dB
vlateral(m/s)
0.00 0.01 0.02 0.05 0.10 0.20 0.50
1:16 | 0.69 0.71 0.70 0.69 0.68 0.67 0.42
2 05 Al_0A 0600029 0A4 (144
4:4 0.45 0.46 0.48 047 045 0.54 041

4. EXPERIMENT
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Figure 9. Performance of Butterfly estimator on water tank data versus angle. Circles denote data points for
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5. CONCLUSION

The effect of echo-to-echo decorrelation on Butterfly Search estimation has been assessed. An analytical approxi-
mation to the expected value of the L function has been found for several cases of interest, and all are found to be
in good agreement with results obtained by ensemble averaging. The approximations indicate that the maximum

value of the L function is limited by the rate of signal decorrelatlon Simulations show that this correlates well w1th
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